If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2+90t+3
We move all terms to the left:
t-(-16t^2+90t+3)=0
We get rid of parentheses
16t^2-90t+t-3=0
We add all the numbers together, and all the variables
16t^2-89t-3=0
a = 16; b = -89; c = -3;
Δ = b2-4ac
Δ = -892-4·16·(-3)
Δ = 8113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-89)-\sqrt{8113}}{2*16}=\frac{89-\sqrt{8113}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-89)+\sqrt{8113}}{2*16}=\frac{89+\sqrt{8113}}{32} $
| 9z+5z-11z-2z=20 | | (x+8)^2=12*15 | | -2(8+3x)=-16 | | ((3x-4)/6)=7/6 | | 14r-13r+r=8 | | 10m-21=(9+6m) | | H(t)=-16t^2+90t+3 | | x+8^2=12*15 | | 55=(2a-1) | | 19b-8b-10b+2b=18 | | 9u-6u-u-u+3u=8 | | 9/16/4/9=y | | 30x-300=900 | | 16z-15z=17 | | 6u-5u=14 | | 0.4-0.5(2x-1)=-0.3(x+4) | | 10c-9c=19 | | 4x=8=-20 | | -3x=5=20 | | 3x=5=-20 | | x/4/9=9/16 | | 2x+14=360 | | (5m+6)13+15=21 | | 5x-4(-3x-20)=-3 | | 0=-16x^2+x-160 | | 6(x-1)=2x-3 | | 112+8x+1+27=180 | | 15=3/2x+17 | | 4x-11-6+8x=12-5x-18 | | -1x+12=-10 | | 5=4x+0.8 | | 10-5x-2=1-6x+7 |